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On the flow near a weak shock wave 
downstream of a nozzle throat 

By A. F. MESSITER AND T. C. ADAMSON 
Department of Aerospace Engineering, University of Michigan, Ann Arbor 

(Raceived 8 July 1974) 

In  a transonic nozzle flow in which the velocity is slightly supersonic in some 
neighbourhood of the nozzle throat, a shock wave may be present either very 
close to the throat or else somewhat further downstream. In the latter case, 
relatively simple series solutions in general provide an asymptotic description 
of the fluid motion except very close to the shock wave. These outer solutions are 
reviewed for symmetric two-dimensional flow, and it is shown that the shock- 
wave jump conditions are not satisfied. A correction is then derived in the form 
of an inner solution for a small region immediately behind the shock. The resulting 
solution exhibits the singularities in the pressure gradient, streamline curvature 
and shock-wave curvature which are expected to occur at the intersection of a 
normal shock wave and a curved wall. An extension to axisymmetric flow is also 
given. 

1. Introduction 

For steady two-dimensional transonic flow through a nozzle having a plane of 
symmetry, one method of solution for the velocity potential uses a series expan- 
sion postulated by Szaniawski (1965) and derived in a more systematic way by 
Adamson, Messiter & Richey (1  974). The series proceeds in powers of a small 
parameter, say E ,  with coefficients containing powers of the transverse co- 
ordinate y and functions of the distance x along the centre-line which are deter- 
mined by the wall shape. If E < 1 measures the typical variation in local Mach 
number within a distance from the throat of the same order as the nozzle width, 
the corresponding relative changes in mass flow and cross-sectional area are of 
order E2, because the Mach number is near one. Thus E2 measures the ratio of the 
nozzle width to the radius of curvature of the wall a t  the throat. 

It was pointed out by Adamson et al. (1974) that in some cases this form of series 
solution is not uniformly valid as the nozzle throat is approached. As an example 
it was shown that the outer Szaniawski solution can be matched asymptotically 
with an inner similarity solution which satisfies the nonlinear transonic small 
disturbance equation in a small region at the throat,. Adamson & Richey (1973) 
have shown that shock discontinuities can be incorporated in these similarity 
solutions, and so the example mentioned can be generalized to permit shock 
waves close to the throat. However, the shocks thus obtained are not exactly 
normal to the streamlines, and so the results are not directly applicable to inviscid 
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nozzle flows because the replacing of a streamline by a smooth solid wall would 
imply a violation of the tangency condition at the wall. 

The application of these ideas when a shock wave is present further downstream 
proceeds in a somewhat different fashion. In 0 2 the series solutions are reviewed 
for this case. The possibility of singular behaviour at  the nozzle throat is con- 
sidered in a way different from that in the previous paper, and it is also shown 
that the shock-wave relations cannot be satisfied by these solutions. It is argued 
that these solutions must therefore be regarded as outer asymptotic expansions 
which are to be matched with an inner expansion valid very close to the shock 
wave. In  $ 3  it is shown that the non-uniform behaviour occurs on the down- 
stream side of the shock, and an inner expansion is constructed which satisfies 
all the necessary conditions. The largest correction term is obtained by solution 
of Laplace’s equation, in suitable variables, in a semi-infinite strip. A logarithmic 
singularity in the pressure gradient appears a t  the foot of the shock, as was also 
surmised in several previous studies. The location of the shock wave is discussed, 
and the extension to axisymmetric flow is outlined briefly. 

2. Outer solutions and their singular behaviour 
Let x and y be non-dimensional co-ordinates measured along and normal to 

the centre-line of a symmetric two-dimensional nozzle, with x = 0 at the point 
of minimum width and with the reference length equal to half the minimum 
width. We shall consider inviscid flow of a perfect gas with constant specific 
heats; the flow will be assumed steady, with uniform total enthalpy. If the gas 
velocity and the local sound speed made non-dimensional with the critical sound 
speed are denoted by q and a respectively, then 

a2V. q = q.  V(&q2), 

a2 q2 y + l  
7-1 2 2(7-1)’  
-++- =- 

where y is the ratio of specific heats. For a convergent-divergent nozzle, the wall 
shape can be expressed as 

(3) 

where f ( 0 )  = f ’ (0 )  = 0. If f” (x )  is continuous and non-zero at the throat, we can 
takef”(0) = 1, so that E 2  is the ratio of the minimum half-width h to the radius 
of curyature R of the wall at  x = 0. Upstream and downstream conditions are 
taken to be such that for E2 = h/R < 1 and x = O(1) the magnitude of the non- 
dimensional velocity is close to one. The shape of a shock wave located at  x = O( 1) 
can be expressed in the form 

y = k [1 +EY(x)l ,  

2 = X J Y ;  E ) ,  (4) 

where xs = O(1) and xi < I for E < 1. The flow is assumed to be irrotational 
upstream of the shock wave, and behind the shock the vorticity remains negli- 
gible to the order of approximation considered here. A perturbation potential $ 
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will be defined by u = 1 + q5z and v = q5g, where u and v are the x and y components 
of q respectively and &+ +: < 1. Equations (1) and (2) then give 

#a/?/ = (Y + 1) #X$,.z + 25Q.Z.y + (Y - 1) #x42/g + 2+z$ ,+x ,  

+ %(Y + 1) E 5 L X  + B(Y - 1) + 3 y y  + B(r - 1) +;+m + t(r + 1) 4;+a/a/. ( 5 )  

The tangency conditions at the nozzle walls are 

Following Adamson et al. (1974), the solutions given by Szaniawski (1965) 
can be derived by assuming that q5 possesses an asymptotic expansion 

9(x, y; E )  - @,(x, y) + E 2 $ 2 ( X >  y) + -733$3(X, y) + . . . (7) 

valid as E + 0 with x and y held fixed. Here E appears as a measure of the typical 
difference between the gas velocity and the sound speed a t  a distance x = 0(1)  
from the nozzle throat. Substitution of the assumed form (7) into the differential 
equation ( 5 )  and the boundary condition (6) leads to a sequence of problems which 
can be solved successively for $1, q52, . . . , and indicates that the interpretation of 
E in (7)  is consistent with the definition (3).  The leading terms of (5) and (6) give 

and so 

For c1 > 0,  the upper and lower signs in (16) correspond, respectively, to super- 
sonic flows having minimum velocity near the nozzle throat and subsonic flows 
having maximum velocity near the throat. 

7-2 
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If c1 = 0, the terms h;, h;, ...) occurring in q52x,  q53s,. .., may be singular at 
x = 0. The full solutions for hi and h; are given above, and we can easily find the 
singular part of h;. The function h; is determined by the boundary condition for 
q54y, which is obtained from (6) when terms of order E4 are retained. Itisseenthat 
q54y(x, 2 1) is bounded as x -+ 0, and the form of hi as x + 0 is found by satisfying 
this requirement. The singular part of the differential equation for q54 arises from 
the term (y + 1) q52,i52,x; hA(x) appears in the term (y  + 1) (q51sq532)z. For example, 
iff(x) = *x2, then hi = & (++ i)-*lxI and as x + 0 

c; 
q54yy - f ( y  + I)* (1x1 hi)’ - ( y  + + iJ(y + l ) s s  (1 - y2) sgn x + . . . . (1  8) x3 - x2 

With hj N 7 +(y + 1)Qcg/lx13, the solutions for the velocity components u and v 
as x -+ 0 are 

u - 1 f E ( y  + l)-*)xl+ E (y  + + iyz-& + . . . 
1x1 

21 - E2xy +E3 { & Q(y + I)* (y3 - y) sgnx+ . . .} + . . . . (20) 

For c1 = c2 = c3 = 0, two flows having continuous yelocity and acceleration 
are possible. A strictly accelerating flow is obtained by taking the lower signs for 
x < 0 and the upper signs for x > 0; a decelerating flow is obtained by reversing 
these signs. In  these cases it is seen that the second terms in u- 1 and 21 are no 
longer small compared with the first terms if x = O(E), and one might therefore 
question the validity of the solution for small x. The possibility of a non-unifor- 
mity a t  x = 0 is also easily inferred from the full equations (5) and (6). By intro- 
ducing a stretched co-ordinate x/Ep and taking the limit as E + 0 with x/EB and 
y held fixed, one concludes from the boundary condition (6) that 

q5v = O(E2x) = O(E2+B) and so also q5 = O(E2+p). 

It is then seen from the differential equation (5) that q5yy and q5,q5,, are of the 
same order, namely O(E3)) if p = 1.  Thus for x = O(E), equation (5) gives 

$l/l/ - (7 + 1)  q 5 X q 5 X Z  + 4 E 3 )  (21) 

and so the leading term in q5 satisfies the transonic small disturbance equation. 
Two solutions of (21) which satisfy the boundary condition &(x, f 1) N & E2f’(x) 
forf(x) = $xa are given by 

u - 1 + E 2 { k  (y+1)-*IXI/E+$g2-g}, (22) 

v - E 3 { ( x / E ) y f Q ( y +  1)$(y3-y)sgnx}, (23) 

where the meaning of the signs is the same as before. Equations (22) and (23) 
describe two special cases of the similarity solutions given by Tomotika & Tamada 
(1950). Since the terms in (22) and (23) are exactly the largest terms in (19) and 
(20) as x + 0, the solution given by (19) and (20) when c2 = cQ = 0 can in fact 
provide a correct description of the flow near x = 0. 
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If, how ever,^, = Oandthesamesignisusedinh; = & (y+l)-glxl forbothx > 0 
and x < 0, the change from an accelerating to a decelerating flow, or vice versa, 
occurs rather abruptly a t  a speed very close to the sound speed, and it is expected 
that (21 )  may be required for small x.  In  these cases it may be more convenient 
to modify the assumed form of solution ( 7 )  by permitting c1 to depend on E in 
the result for hi given by (16) .  If c1 were replaced by (y+  1)  (Ec2+E2c3+ ...), 
equation (16) would become 

hi(x) = & {X'/(? + 1) + ~ E c ,  + 2E2c3 + . . .}&. (24)  

The terms in 56, and q53 which contain c2 and c3 would now be omitted, since they 
are the terms which would arise if hi as given by (24 )  were expanded for E --f 0. 
If c2 > 0 in (24 ) ,  then E2q5, remains much smaller than Eq51 as x -+ 0, and so (19) 
and ( Z O ) ,  with the modified form for h;(x), remain correct as x -+ 0. But if c2 = 0 
and c3 > 0, this is no longer true, and the nonlinear equation (21 )  is needed for 
x = O(E). The same conclusion follows for any wall shapef(x) such that 

f(x) - +x2 as x +  0. 

At a shock wave described by x = x, (y ;  E )  as in ( 4 ) ,  another npn-uniformity 
can be shown to occur. It is assumed tentatively that 

X,@; E )  - x0 + Ex1 + E"x2(y) + . . . , (25 )  

where xo and x1 are independent of y and a > 1. If the shock wave were exactly 
normal to the streamlines at  each point, it would follow that a = 2; it is shown in 
$ 3  that the correct value is a = 3. The shock-polar equation relating velocity 
components upstream and downstream of the shock is 

where the subscripts u and d denote values immediately upstream and down- 
stream of the shock wave respectively. This equation is derived from the more 
familiar form, for which v, = 0,  by a rotation of co-ordinates. Since u, N 1, 
v, < 1 and v, < 1, the largest terms of (26 )  give 

(v,-vu)2 - +(y+ 1 )  (Uu-U,)2(U,U,- 1) .  (27 )  

At a shock wave the jump in the velocity vector is in the direction normal to the 
shock, and so has components in the ratio 

(Vd - VU) / (Ud  - uu)  = - d*  (28)  

uuu, = 1 +O(E2a). (29 )  

If we now take u, - u, = O(E)  and xi = O(Ea), with a > 1, it follows that 

That is, t o  the order required, the Prandtl relation for a normal shock wave is 
sufficient. Solutions given by the first two terms of ( 7 )  are assumed to be valid 
both upstream and downstream, with upper and lower signs chosen in (16 )  for 
x < x, and x > x, respectively. Substituting these solutions in (29) ,  we find 

E(u1, + U l d )  + E 2 ( ~ , ,  + ~ 2 d  + UluUld)  + . . = 0, (30) 
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where u1 = q51x and u2 = q52z. If the terms in (30) are expanded about the approxi- 
mate shock location x = xo, it follows for E + 0 that 

h;d(XO) = -h;u(xO), (31) 

hhd(XO) = -h~u(xO)-xlh';d(xO) ~ x l h ' ~ u ~ x o ~ ~ h ~ d ~ x o ~  h;u(XO)--fn(XO)y2* (32) 

The condition (31) is satisfiedfor the choice of signs proposed above, and the terms 
proportional to x1 in (32) sum to zero. However, the term proportional to y2 can 
not be cancelled, and so (32) can not be satisfied. We conclude that the error 
arises because asymptotic solutions of the form (7) should be regarded as outer 
solutions which are not necessarily correct a t  points close to the shock wave. An 
inner solution which does satisfy all the required conditions is obtained in the 
next section. 

3. Inner solution for the flow near the shock wave 
Since the jump conditions at the shock wave are satisfied by the term in u 

which is of order E but not by the term of order E2, we anticipate that an inner 
solution valid close to the shock wave such that the former term is constant but 
the latter changes rapidly with x is required. Here q5xz is larger than elsewhere, 
and q5,q5,, is no longer small in comparison with &,. If we define an inner variable 
x* = ( x  - xo)/Eu, the rapidly varying term in q5 is O(E2+"), and the corresponding 
terms in q5zx and q52/11 are O(E2-") and O(E2+") respectively. Since q5, = O(E), 
the suggested balance of terms gives G = +. The velocity components may be 
writ ten in the form 

u N 1 & Eh;, & E%(y + I)* h$Xi0x* + E2{ f &(y + I)  h;,h';,~*~ 

f xlh';o + Sfo"(y2 - *) + 9(3 - 2 7 )  hi; & c2/h;, + u*(x*, y)} + . . . , 
v N E2fAy+Et(y+ l)*h;~{f;lX*~+V*(X*,~)}+ ..., 

(33) 

(34) 

where we have defined 

X* = (y+  l)-Jh;,*E-+(x-xo), (35) 

hi0 = h;,(xo) = 26 (y+  1)-*(f0+c1)* (36) 
and 

fo = f(xo),  f; = f'(xo), f: = f"(xo),  h'io = h;,(x0) and hyo = hTu(xo). 

At the shock wave x* = O(EH), and so the functions appearing in the shock jump 
coqditions will be expanded about their values at x* = 0. The upper and lower 
signs in (33) are to be taken for x* < 0 and x* > 0 respectively. The constant c2 
may have different values cZu and c~~ for x < xo and x > xo; an equation relating 
cZu, C2d and xo will be obtained below. The functions shown explicitly in (33) 
and (34) are just the largest terms in the expansion of the outer solution (7) as 
Ix-xoI -+ 0; u* and v* will give the deviations from the outer solution. 

If we define a term q5*(x*, y) in the perturbation potential by 

u* = q5*,., v* = q5; (37) 
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the differential equation (5) gives, for E 3 0, 

$;g = +$*,*.*, (38) 

where again the upper and lower signs are to be taken for x* < 0 and x* > 0 
respectively. Substituting (33)) (34) and (37) in the boundary condition ( B ) ,  we 
find 

$f(X*) 1 1 )  = 0. (39) 

We obtain conditions for Ix*I + 00 by suitable asymptotic matching of the inner 
and outer solutions. It is assumed that there exist values of E and x such that 
E < 1, Ix--xoI < 1 and Ix*J % 1 for which the potential $ given by ( 7 )  differs 
from that obtained using (33) and (34) by terms much smaller than Eg. Since 
(38) is a wave equation for x* < 0 and is Laplace’s equation for x* > 0, the match- 
ing conditions are satisfied to the appropriate order if we impose initial conditions 
for x* -+ - 00 and a boundary condition for x* -+ + 00, as follows: 

$*,*(x*,y), $;(x*,y) --f 0 as x* --z -co, (40) 

$z*(-x*,y) + 0 as x* --f +a. (41) 

Equation (29) again is a correct approximation to the shock-polar equation (26)) 
a t  least to order E2, with u obtained by evaluating (33) a t  x* = 0. Terms of order 
E2 give 

where u,* and uz are values immediately upstream and downstream of x* = 0 
respectively. 

For x* < 0, the only solution which satisfies the boundary condition (39) and 
the matching conditions (40) as x* + -00 is u* = v* = 0. Thus u,* = 0, and the 
Prandtl relation (42) gives 

f , ” ( y 2 - g ) f g ( 3 - 2 y ) h ; ~ + ( c z u - c 2 , ) / h i o + u , *  + ~ z - h ; g  = 0, (42) 

u; = f ; (g  - 9 2 )  + 23 3Y h’2 10 - ( c z u  - Czd) /h;o?  (43) 

where xo and C2d are still unspecified. 
Equations (39)) (41) and (43), with uz set equal to &(O, y), give the boundary 

conditions needed to determine #* from (38) for x* > 0 and I yI < 1. These bound- 
ary values must be such that the integral of the normal derivative of $*) which 
gives a net volume outflow, is equal to zero. Thus the integral of u* from y = - 1 
to y = I must be the same as x* --z co as a t  x* = 0. It follows from (41) and (43) 
that  

c2d = - $yhi3,+~2,, (44) 

$m> y) = - y”. (45) 

Equation (44) can be regarded as completing the determination of the down- 
stream outer solution for $2 in terms of the corresponding upstream solution and 
the shock location as approximated by x = xo. The downstream solution for $* 
which satisfies all the boundary conditions is now found to be 
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The approximate location of the shock wave can be determined if the upstream 
flow is known and one quantity downstream is also given. For example, if u2 
is known a t  some value of x, then cZd is also known; hio is given by equation (44), 
and xo therefore can be found. Since, however, the inner solution provides only a 
local correction, it is not really needed for the derivation of (44). An alternative 
derivation can be given which permits a more direct interpretation and which 
also suggests a simplified procedure for the calculation of xl. The entropy jump 
a t  a normal shock wave is 

where s is the specific entropy, R is the gas constant, p and p are the pressure and 
density made non-dimensional with sonic values upstream of the shock wave, 
M is the Mach number and the subscripts u and d again refer to conditions im- 
mediately upstream and downstream of the shock wave respectively. Equation 
(2 )  provides an expression for Mu in terms of uu, and the first terms of the outer 
solution for u, are found from (9), (la), (16 )  and (17). After these substitutions 
have been made, expansion of (47) gives 

( S d - S u ) / R  -QE3Y(Y+ I)hi$+ E4y(y+ l)h;i{f:(y2-&)-#yh;i 
+ 2x1 + 2cZu/h;o) + . . . , (48) 

where the expansion ulu = hio + Ex,h;, + . . . has also been used. To these orders 
the entropy is constant along lines y = constant, which are approximately coinci- 
dent with the streamlines. Hence (47) and (48) may be regarded as expressing s 
and p / p  approximately as functions of y a t  any location downstream of the 
shock wave. If the term of order E3 in the entropy or total pressure were specified, 
then xo would be determined. If instead (47) is used to eliminate p in (2) ,  with 
a2 = p/p, an expansion for pu can be obtained: 

(49) 
Sa - Su 

R .  + (# - y )  u;u2+ &( 1 - ;) (y - +) u:] + . .. -- 
The mass flow is then found to be, for x > xo, 

At the throat x = 0,  since &(y+ 1) u; = c1 and the term (sd-sU)/R is absent, the 
corresponding result is 

/olpudy = 1 - E2c1 - E3(y + 1) cZu + . . . . (51) 

These two expressions must of course be identical. The terms of order E2 agree, 
according to ( l 6 ) ,  and if we equate the terms of order E3, we recover (44). By 
retaining terms of order E4, we would obtain an additional equation relating x1 
and u3. The pressure is found by combining (47), (48) and (2): 

p f f  l - E y u l - E 2 y u , + E 3 ( - ~ u ~ - ~ y ( y + 1 ) U ~ ) +  ... . (52 )  
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At some downstream location x = xr where the walls are parallel and 

f’ =f” =..* = 0, 

we might suppose that the pressure p = 1 +e  is given where e = Eyh;(xr) + ... 
is a small positive number consistent with (16), so that c1 2 0. Terms of order 
E2, E3, . .., in (52) may be specified arbitrarily; for example, we may set these 
terms equal to zero. Then xo and x1 are found by requiring that the mass flow be 
the same at x = 0 and at x = x,.. From these considerationsitisseen, asanticipated, 
that no term of order E* is required in the expression for the shock-wave shape 
given by (25), whereas in general a constant term of order E does appear, 

The shock-wave slope x:(y) is found from (28). After substituting (33), (34) 
and (46), one finds a = 3, consistent with the original assumption a > 1, and 

W 

(53) 
2 

n2 n=l nz 
x ’ ( y ; ~ )  N - E Q - (  +i)*hh-*fi 3 (sinnny. 

The term $* in the perturbation potential and the shock-wave contour given 
by x = x,(y) have second derivatives which are singular at the intersections of 
the shock wave and the nozzle walls. Differentiating (46) twice and rewriting 
in complex form, one finds 

( -  ”“{exp [in(x*+iy)]?. (54) 
4 m  

?f n = l  7% 
$Z*,* - i&*, = - f; c - 

Replacing ( - l)% by efinn and summing the series, one next obtains 

~ $ 2 ~ ~ .  - iC$& = ( - 4/n)fI; log (1 - exp [ - n(x* + i(y T I))]}. 

$:*,* - i$$, N ( - 4/n)f;lOg {T[X* + i(y T I)]}. 

(55)  

(56) 

For lx* +i(y T 1)1 -+ 0,  

The real and imaginary parts contribute respectively to the pressure gradient 
and to the streamline curvature. As x* -+ 0 and y --f 5 1, 

p, N Eyh,”+EPy(y+ 1)-~h;-*(2/n)f~log{n2[x*2+ (yT 1)2]} (57) 

and so p ,  has a logarithmic singularity such that a weak but rapid expansion 
occurs along the surface immediately downstream of the shock wave; just 
upstream of the shock pz  w - E y g  + O(E2). The streamline curvature down- 
stream of the shock as x* -+ 0 and y -+ ~f: 1 is 

where the upper and lower signs refer to the upper and lower nozzle walls respec- 
tively. It is seen that the limiting value of u, at the intersection of the shock wave 
and the nozzle wall depends on the path of approach to the point. For example, 
the value is consistent with the body curvature if first y -+ ~f: 1 and then x* + 0, 
but differs if first x* -+ 0 and then y -+ 2 1. Since p ,  N -v,, along the shock one 
finds pv N - yf’fo” for - 1 < y < 1 just upstream and pv N & f: as y + f 1 just 
downstream. Thus near the walls the shock-wave relations considered alone 
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would lead to a change of sign in p y  and therefore in vz, and the wall boundary 
condition would be violated. The solution to the differential equations shows 
that the boundary condition still can be satisfied, but that the solut,ion is singular. 
Finally, the shock-wave curvature as y + k 1 is found to be 

and has a logarithmic singularity. Since x: < 0 near y = k 1, the shock wave 
curves slightly upstream from the normal to each wall, iff; > 0. 

The form of singularity shown in (57)-(59) has also been proposed by Gadd 
(1960)) Oswatitsch & Zierep (1960) and Ferrari & Tricomi (1968, p. 358). Noting 
the contradiction arising a t  a curved wall because of the sign change in p ,  pre- 
dicted by the normal-shock relations, they postulated a local solution which does 
permit both the shock-wave jump conditions and the wall boundary condition 
to be satisfied. For an airfoil in steady motion a t  a slightly subsonic speed, with 
negligible boundary-layer effects, it  seems reasonable to expect that these 
solutions correctly describe the flow at the foot of a shock wave which terminates 
an embedded supersonic region. The present derivation provides an example 
in which their assumed local solutions can be obtained as part of the solution to a 
boundary-value problem for the flow in a larger region. These singularities in 
the derivatives can be removed by an analysis which takes into account the inter- 
action of the inviscid flow and the boundary layer along the nozzle walls. For an 
unseparated boundary layer, a solution describing small perturbations on an 
undisturbed velocity profile would be coupled with a solution to the nonlinear 
transonic small disturbance equation in a region having dimensions small in 
comparison with E4 for sufficiently large Reynolds number. 

The outer and inner representations in the form given by (7)) (33) and (34) can 
be combined to give a composite expansion valid throughout the region x = O(1) 
as follows : 

$(x,y;E) E#1(X,Y)+E2#,(X7 y)+E%(y+ 1)*h;b*(x",y)+..., (60) 

where $* is now defined to be zero for x* < 0. The factor {E(y  + 1)  hi,}+ is just 
the first approximation to (41;- I)*. Equation (60), together with the solutions 
for # l , q h 2  and qh* given previously, permits calculation of terms O(E2) and 
O(E%) in u and v respectively, with cad expressed in terms of some flow quantity 
evaluated a t  a reference location downstream of the shock wave. For small 
Jx--xoI, expansion of the first two terms in (60) gives the functions shown ex- 
plicitly in (33) and (34), and so (60) reduces to the inner solution. For x* -+ co, 
$* is expdnentially small, and for x* + - co, #* is zero, so that the outer solution 
is recovered if Ix*l > I. If c1 > 0 or if c1 = c2u = cQU = ... = 0, the composite 
solution also remains correct at x = 0. If  c1 = 0 and cZu > 0, the result is again 
valid near x = 0 if c1 is replaced by ( y  + 1) Eczu as proposed in 0 2. If, however, 
c1 = cZu = 0 and c3,, > 0, a modification is required since the solution is not 
correct in detail near the throat. 

A similar description can be given for an axisymmetric nozzle flow with a 
shock wave located a t  a distance x = O( 1) downstream of the throat. The nozzle 



Flow near a weak sh,ock wa,ve I07 

wall is at  r = 1 + E2f(x), where r is the radial co-ordinat>e. The velocity components 
now are 4, and $?, and q5uu is replaced by $rr + r-l when V . q is evaluated in (1). 
An outer solution is found as before, in terms of a series proceeding in powers 
of E as in (7).  Again it is found that the shock-wave jump conditions can not be 
satisfied and so an inner solution is introduced, in the manner of (33)-(36). 
The results can be shown in a more compact form if a composite solution is 
written down directly. One finds 

$(x, r ;  E )  - Eh,(x) +E2(&ff’(x)  r2 + h2(x)} + E*(y + l)*h;%$*(x*, r )  + . . ., 

h;(x) = f 2(y+ l ) -qf (x)  +c,}$, 

h i ( X )  = 9(3 - 27) h;2(x) -$f”(x) + c&(x), 

x* = E-qy + l)-%;;qx- go). 

(61) 

(62) 

(63) 

(64) 

where 

Again hio = h;,(r0), fo = f(xo), etc. and hL(x) has been found using the boundary 
condition for $3. The term $* is understood to be zero for x* < 0, and satisfies 
Laplace’s equation with boundary condition $:(x*, I )  = 0 for x* > 0. The solu- 
tion which is bounded at  r = 0 is given in terms of Bessel functions by the series 

m 

$*(x*, r )  = 2 u , e - * ~ ~ ~ * J , ( ~ , r ) ,  

JA(A,) = 0. 

n.=l 
where the A,, are the zeros of JA: 

Following the same steps as in the two-dimensional case, one finds 

c~~ = - $yh;z + c2, and $2*(0, r )  = (& - r2),fs. 

The boundary condition at the shock wave is then satisfied if 

(67) 
1 

0 
- h,a,/ rJg(A,r) dr = f b  r (&  - r 2 )  J,(h,r) dr. 

Using various identities and recursion formulae, one finds 

The approximate location of the shock wave can be found as in the plane case 
from the requirement that $:, should contribute nothing to the mass flow. 
At the intersection of the shock wave with the nozzle wall, the second derivatives 
of ( 6 5 )  are expected to show the same singularities as in the two-dimensional case. 
For A,’ 9 1 , the terms in the series (65) as x* -+ 0 and r -+ 1 are approximately 

a, = 4f;l/Ai Jo(h,). (68) 

Since the singular behaviour of the series depends on the form of the terms for 
large n, it  follows that the second derivatives of (65) and (46) do, in fact, have the 
same singularities. Thus, all the general features of the flow are the same as in the 
plane case. 
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